首页> 外文OA文献 >Conjugacies provided by fractal transformations I : Conjugate measures, Hilbert spaces, orthogonal expansions, and flows, on self-referential spaces
【2h】

Conjugacies provided by fractal transformations I : Conjugate measures, Hilbert spaces, orthogonal expansions, and flows, on self-referential spaces

机译:由分形变换提供的共轭I:共轭措施,   自引用空间上的希尔伯特空间,正交展开和流动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Theorems and explicit examples are used to show how transformations betweenself-similar sets (general sense) may be continuous almost everywhere withrespect to stationary measures on the sets and may be used to carry well knownflows and spectral analysis over from familiar settings to new ones. The focusof this work is on a number of surprising applications including (i) what wecall fractal Fourier analysis, in which the graphs of the basis functions areCantor sets, being discontinuous at a countable dense set of points, yet havevery good approximation properties; (ii) Lebesgue measure-preserving flows, onpolygonal laminas, whose wave-fronts are fractals. The key idea is to exploitfractal transformations to provide unitary transformations between Hilbertspaces defined on attractors of iterated function systems. Some of the examplesrelate to work of Oxtoby and Ulam concerning ergodic flows on regions boundedby polygons.
机译:定理和显式示例用于显示自相似集合之间的转换(一般意义)相对于集合上的固定度量如何几乎在任何地方都是连续的,并且可以用于进行众所周知的流程和从熟悉的设置到新设置的频谱分析。这项工作的重点是在许多令人惊讶的应用程序上,其中包括:(i)我们所说的分形傅立叶分析,其中基函数的图是Cantor集,在可数密集点上不连续,但具有非常好的近似特性; (ii)保留Lebesgue测度的流,在波前为分形的多边形薄片上。关键思想是利用分形变换在迭代函数系统的吸引子上定义的希尔伯特空间之间提供单一变换。其中一些示例与Oxtoby和Ulam的工作有关,涉及多边形边界区域上的遍历流动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号